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theorem can be formulated to establish the existence of a unique positive nth root of a,
denoted by

ffiffiffi
an

p
or a1=n, for each n 2 N .

Remark If in the proof of Theorem 2.4.7 we replace the set S by the set of rational
numbers T :¼ fr 2 Q : 0 " r; r2 < 2g, the argument then gives the conclusion that y :¼
sup T satisfies y2 ¼ 2. Since we have seen in Theorem 2.1.4 that y cannot be a rational
number, it follows that the set T that consists of rational numbers does not have a supremum
belonging to the set Q . Thus the ordered field Q of rational numbers does not possess the
Completeness Property.

Density of Rational Numbers in R
We now know that there exists at least one irrational real number, namely

ffiffiffi
2

p
. Actually there

are ‘‘more’’ irrational numbers than rational numbers in the sense that the set of rational
numbers is countable (as shown in Section 1.3), while the set of irrational numbers is
uncountable (see Section 2.5). However, we next show that in spite of this apparent disparity,
the set of rational numbers is ‘‘dense’’ inR in the sense that given any two real numbers there
is a rational number between them (in fact, there are infinitely many such rational numbers).

2.4.8 The Density Theorem If x and y are any real numbers with x < y, then there
exists a rational number r 2 Q such that x < r < y.

Proof. It is no loss of generality (why?) to assume that x> 0. Since y# x > 0, it follows
from Corollary 2.4.5 that there exists n 2 N such that 1=n < y# x. Therefore, we have
nxþ 1 < ny. If we apply Corollary 2.4.6 to nx > 0, we obtain m 2 N with
m# 1 " nx < m. Therefore, m " nxþ 1 < ny, whence nx < m < ny. Thus, the rational
number r :¼ m=n satisfies x < r < y. Q.E.D.

To round out the discussion of the interlacing of rational and irrational numbers, we
have the same ‘‘betweenness property’’ for the set of irrational numbers.

2.4.9 Corollary If x and y are real numbers with x < y, then there exists an irrational
number z such that x < z < y.

Proof. If we apply the Density Theorem 2.4.8 to the real numbers x=
ffiffiffi
2

p
and y=

ffiffiffi
2

p
, we

obtain a rational number r 6¼ 0 (why?) such that

xffiffiffi
2

p < r <
yffiffiffi
2

p :

Then z :¼ r
ffiffiffi
2

p
is irrational (why?) and satisfies x < z < y. Q.E.D.

Exercises for Section 2.4

1. Show that supf1# 1=n : n 2 Ng ¼ 1.

2. If S :¼ f1=n# 1=m : n;m 2 Ng, find inf S and sup S.

3. Let S % R be nonempty. Prove that if a number u in R has the properties: (i) for every n 2 N the
number u# 1=n is not an upper bound of S, and (ii) for every number n 2 N the number uþ 1=n
is an upper bound of S, then u ¼ sup S. (This is the converse of Exercise 2.3.9.)
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4. Let S be a nonempty bounded set in R .
(a) Let a > 0, and let aS :¼ fas : s 2 Sg. Prove that

infðaSÞ ¼ a inf S; supðaSÞ ¼ a sup S:

(b) Let b < 0 and let bS ¼ fbs : s 2 Sg. Prove that

infðbSÞ ¼ b sup S; supðbSÞ ¼ b inf S:

5. Let S be a set of nonnegative real numbers that is bounded above and let T :¼ fx2 : x 2 Sg.
Prove that if u ¼ sup S, then u2 ¼ sup T . Give an example that shows the conclusion may be
false if the restriction against negative numbers is removed.

6. Let X be a nonempty set and let f : X ! R have bounded range in R . If a 2 R , show that
Example 2.4.l(a) implies that

supfaþ f ðxÞ : x 2 Xg ¼ aþ supf f ðxÞ : x 2 Xg:

Show that we also have

inffaþ f ðxÞ : x 2 Xg ¼ aþ inff f ðxÞ : x 2 Xg:

7. Let A and B be bounded nonempty subsets of R , and let Aþ B :¼ faþ b : a 2 A; b 2 Bg. Prove
that supðAþ BÞ ¼ sup Aþ sup B and infðAþ BÞ ¼ inf Aþ inf B.

8. Let X be a nonempty set, and let f and g be defined onX and have bounded ranges inR . Show that

supf f ðxÞ þ gðxÞ : x 2 Xg % supf f ðxÞ : x 2 Xgþ supfgðxÞ : x 2 Xg

and that

inff f ðxÞ : x 2 Xgþ inffgðxÞ : x 2 Xg % inff f ðxÞ þ gðxÞ : x 2 Xg:

Give examples to show that each of these inequalities can be either equalities or strict
inequalities.

9. Let X ¼ Y :¼ fx 2 R : 0 < x < 1g. Define h : X & Y ! R by hðx; yÞ :¼ 2xþ y.
(a) For each x 2 X, find f ðxÞ :¼ supfhðx; yÞ : y 2 Yg; then find inff f ðxÞ : x 2 Xg.
(b) For each y 2 Y , find gðyÞ :¼ inffhðx; yÞ : x 2 Xg; then find supfgðyÞ : y 2 Yg. Compare

with the result found in part (a).

10. Perform the computations in (a) and (b) of the preceding exercise for the function h : X & Y ! R
defined by

hðx; yÞ :¼ 0 if x < y;
1 if x ' y:

!

11. Let X and Y be nonempty sets and let h : X & Y ! R have bounded range in R . Let f : X ! R
and g : Y ! R be defined by

f ðxÞ :¼ supfhðx; yÞ : y 2 Yg; gðyÞ :¼ inffhðx; yÞ : x 2 Xg:

Prove that

supfgðyÞ : y 2 Yg % inff f ðxÞ : x 2 Xg:

We sometimes express this by writing

sup
y

inf
x
hðx; yÞ % inf

x
sup
y

hðx; yÞ:

Note that Exercises 9 and 10 show that the inequality may be either an equality or a strict
inequality.
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12. Let X and Y be nonempty sets and let h : X ! Y ! R have bounded range in R . Let F : X ! R
and G : Y ! R be defined by

FðxÞ :¼ supfhðx; yÞ : y 2 Yg; GðyÞ :¼ supfhðx; yÞ : x 2 Xg:

Establish the Principle of the Iterated Suprema:

supfhðx; yÞ : x 2 X; y 2 Yg ¼ supfFðxÞ : x 2 Xg ¼ supfGðyÞ : y 2 Yg

We sometimes express this in symbols by

sup
x;y

hðx; yÞ ¼ sup
x

sup
y

hðx; yÞ ¼ sup
y

sup
x

hðx; yÞ:

13. Given any x 2 R, show that there exists a unique n 2 Z such that n% 1 & x < n.

14. If y > 0, show that there exists n 2 N such that 1=2n < y.

15. Modify the argument in Theorem 2.4.7 to show that there exists a positive real number y such
that y2 ¼ 3.

16. Modify the argument in Theorem 2.4.7 to show that if a > 0, then there exists a positive real
number z such that z2 ¼ a.

17. Modify the argument in Theorem 2.4.7 to show that there exists a positive real number u such
that u3 ¼ 2.

18. Complete the proof of the Density Theorem 2.4.8 by removing the assumption that x > 0.

19. If u > 0 is any real number and x < y, show that there exists a rational number r such that
x < ru < y. (Hence the set fru : r 2 Qg is dense in R .)

Section 2.5 Intervals

The Order Relation on R determines a natural collection of subsets called ‘‘intervals.’’
The notations and terminology for these special sets will be familiar from earlier
courses. If a; b 2 R satisfy a < b, then the open interval determined by a and b is
the set

ða; bÞ :¼ fx 2 R : a < x < bg:

The points a and b are called the endpoints of the interval; however, the endpoints are not
included in an open interval. If both endpoints are adjoined to this open interval, then we
obtain the closed interval determined by a and b; namely, the set

½a; b( :¼ fx 2 R : a & x & bg:

The two half-open (or half-closed) intervals determined by a and b are [a, b), which
includes the endpoint a, and (a, b], which includes the endpoint b.

Each of these four intervals is bounded and has length defined by b% a. If a ¼ b, the
corresponding open interval is the empty set ða; aÞ ¼ ;, whereas the corresponding closed
interval is the singleton set ½a; a( ¼ fag.

There are five types of unbounded intervals for which the symbols1ðorþ1Þ and%1
are used as notational convenience in place of the endpoints. The infinite open intervals are
the sets of the form

ða;1Þ :¼ fx 2 R : x > ag and ð%1; bÞ :¼ fx 2 R : x < bg:
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